35,677 views
8 votes
8 votes
The question: Define a variable, write an equation, and solve each problem. Then check your solution.

The problem: Three times the greatest of three consecutive even integers exceeds twice the least by 38. Find the integers.

User Patilnitin
by
2.9k points

1 Answer

15 votes
15 votes

Answer: 26, 28, 30

Explanation:

Let's define a variable x to represent the least of the three consecutive even integers. This means that the three integers are x, x + 2, and x + 4.

We can write the given information as an equation:

3 * (x + 4) = 2 * x + 38

We can solve for x by moving all the terms with x to one side of the equation and all the other terms to the other side:

3 * (x + 4) - 2 * x = 38

Then we can distribute the 3 and the -2 to get:

3 * x + 12 - 2 * x = 38

And then we can combine like terms on each side of the equation:

x + 12 = 38

Finally, we can subtract 12 from both sides to solve for x:

x = 26

Therefore, the three consecutive even integers are 26, 28, and 30.

We can check our solution by substituting these values back into the original equation and verifying that it holds true:

3 * (26 + 4) = 2 * 26 + 38

3 * 30 = 52 + 38

90 = 90

The equation holds true, so our solution is correct.

User Shameeza
by
2.9k points