Answer:
x=ln(4)
Explanation:
e^2x +3e^x- 28=0
u^2 + 3u - 28 = 0 ==> substitute u for e^x
u^2 - 4u + 7u - 28 = 0
u(u-4) + 7(u-4) = 0
(u-4)(u+7)=0 ==> simplify
u-4=0 u+7=0
u=4 u=-7
e^x=4 e^x=-7 ==> substitute e^x for u
ln(e^x)=ln(4) ln(e^x)=-7 ==> take natural log on each side
x=ln(4) x=ln(-7), which is not possible since natural log>0
x=ln(4)