220k views
18 votes
Here are some values of sequence Q. Write a recursive definition for the sequence.

n Q(n)
1 3
3 8
7 18​

User JanTheGun
by
4.8k points

1 Answer

8 votes

Answer: Q(n) = Q(n - 1) + 2.5

Explanation:

We have 3 values of the sequence Q(n)

These values are:

Q(1) = 3

Q(3) = 8

Q(7) = 18

I would think that this is a geometric sequence.

Remember that the equation for the n-th term of a geometric sequence is:

A(n) = A(1)*r^(n-1)

where r is a constant, and A(1) is the first term of the sequence.

If we rewrite the terms that we know of Q(n) in this way we get:

Q(3) = Q(1)*r^(3 - 1) = 3*r^2 = 8

Q(7) = Q(1)*r^(7 - 1) = 3*r^6 = 18

Then we have two equations:

3*r^2 = 8

3*r^6 = 18

We should see if r is the same for both equations:

in the first one we get:

r^2 = 8/3

r = (8/3)^(1/2) = 1.63

and in the other equation we get:

r^6 = 18/3

r = (18/3)^(1/6) = 1.34

Then this is not a geometric sequence.

Now let's see if this is an arithmetic sequence.

The n-th term of an arithmetic sequence is written as:

A(n) = A(1) + (n - 1)*d

where d is a constant.

If we write the terms of Q(n) that we know in this way we get:

Q(3) = Q(1) + (3 - 1)*d = 3 + 2*d = 8

Q(7) = Q(1) + (7 - 1)*d = 3 + 6*d = 18

We need to see if d is the same value for both equations.

in the first one we get:

3 + 2*d = 8

2*d = 8 - 3 = 5

d = 5/2 = 2.5

In the second equation we get:

3 + 6*d = 18

6*d = 18 - 3 = 15

d = 15/6 = 2.5

d is the same for both terms, then this is an arithmetic sequence.

An arithmetic sequence is a sequence where the difference between any two consecutive terms is always the same value (d)

Then the recursive relation is written as:

A(n) = A(n - 1) + d

Then the recursive relation for Q is:

Q(n) = Q(n - 1) + 2.5

User Michael Bautista
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.