Final answer:
To solve the system of equations, we can use the method of Gaussian elimination. The solution can be expressed in terms of a parameter.
Step-by-step explanation:
To solve the system of equations, we can use the method of Gaussian elimination or matrix algebra. Let's use Gaussian elimination:
- Write the system of equations in augmented matrix form:
$$\begin{bmatrix}1 & 1 & -4 & -2 \\ 6 & 7 & 2 & 9 \end{bmatrix}$$
- Create zeros below the pivot element:
$$\begin{bmatrix}1 & 1 & -4 & -2 \\ 0 & 1 & 26 & 21 \end{bmatrix}$$
- Eliminate the coefficients above and below the pivot element:
$$\begin{bmatrix}1 & 0 & 70 & 59 \\ 0 & 1 & 26 & 21 \end{bmatrix}$$
- Write the system of equations in row echelon form:
$$\begin{aligned} x_1 + 70x_3 &= 59 \\ x_2 + 26x_3 &= 21 \end{aligned}$$
- Now, the system of equations is solved. We can express the solution as:
$$\begin{aligned} x_1 &= 59 - 70x_3 \\ x_2 &= 21 - 26x_3 \\ x_3 &= \text{s (parameter)} \end{aligned}$$