Final Answer:
The LU decomposition of matrix A using Doolittle's method is given by:
![\[ A = \begin{bmatrix} 2 & -1 & 1 \\ -3 & 4 & -1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -(3)/(2) & 1 & 0 \\ (1)/(2) & (1)/(3) & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ 0 & (5)/(2) & -(3)/(2) \\ 0 & 0 & (5)/(3) \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/67v7sfhjhll59yr4cklfnufhkvzhn47q8t.png)
Step-by-step explanation:
Doolittle's method involves decomposing matrix A into a lower triangular matrix (L) and an upper triangular matrix (U). The process starts with assuming L to be a lower triangular matrix with ones on the diagonal and U as an upper triangular matrix with elements on the diagonal. The values of L and U are then determined by Gaussian elimination.
For the given matrix A:
![\[ A = \begin{bmatrix} 2 & -1 & 1 \\ -3 & 4 & -1 \\ 1 & -1 & 1 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/gj7vfak1ik2q5aahfdbgis2j5rm6i0cwqh.png)
After applying Doolittle's method, we get:
![\[ L = \begin{bmatrix} 1 & 0 & 0 \\ -(3)/(2) & 1 & 0 \\ (1)/(2) & (1)/(3) & 1 \end{bmatrix}, \]](https://img.qammunity.org/2024/formulas/mathematics/college/301yqu5n7y2e0f4xc2myanhulkhjlz1aiz.png)
![\[ U = \begin{bmatrix} 2 & -1 & 1 \\ 0 & (5)/(2) & -(3)/(2) \\ 0 & 0 & (5)/(3) \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/n4ugzvmotm0gsk3bcpsxb7jmgla7w6iot4.png)
To solve a system of equations Ax = b, where b is a column matrix, we can use the LU decomposition to solve two simpler systems: Ly = b and Ux = y. By forward and backward substitution, we can find the values of x and y and ultimately the solution to the original system of equations.