180k views
4 votes
Diamond recently bought a car. Her research shows the car will depreciate an average of $1,200 per year. She knows that after 8 years, her car will be worth $22,600. Let x represents the number of years Diamond owns the car and y represent the value of the car.

Write a function that represents the value of car after x years.

User Tim Dunphy
by
7.4k points

1 Answer

5 votes

Final answer:

To represent the value of Diamond's car over time, we determine a linear depreciation function using the slope of $1,200 yearly depreciation and the given point (8 years, $22,600 in value). The function is y = -$1,200x + $32,200, indicating the car's initial value and its depreciation over time.

Step-by-step explanation:

Writing a Function to Represent Car Value Depreciation

To write a function that represents the value of Diamond's car after x years, we'll use the information provided: Diamond's car depreciates $1,200 every year, and after 8 years, the car will be worth $22,600. We can use these two points to determine the linear depreciation function.

First, let's identify the annual depreciation as the slope of the function: $1,200 per year. Next, we'll use the point (8, $22,600) to solve for the y-intercept, which represents the initial value of the car. The linear function will be of the form: y = mx + b, where m is the slope and b is the y-intercept.

Now, we plug in values for x and y from the point (8, $22,600):

$22,600 = (-$1,200) × 8 + b

We solve for b, which gives us:

b = $22,600 + ($1,200 × 8)b = $22,600 + $9,600b = $32,200

This means the initial value of the car is $32,200. The final depreciation function is:

y = -$1,200x + $32,200

This function tells us the value of Diamond's car (y) after x years of ownership.

User Imran Abbas
by
8.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories