Final answer:
To estimate f′(3.5) using the forward difference method, use a step size of 0.01. Then, use this value in the Newton-Raphson method to find an improved value of x0.
Step-by-step explanation:
To estimate f′(3.5) using the forward difference method, we need to use a step size of 0.01. We can calculate the forward difference using the formula:
f′(x) ≈ (f(x + h) - f(x)) / h
Substituting the values, we get:
f′(3.5) ≈ (f(3.51) - f(3.5)) / 0.01
Now, we can use this value in the Newton-Raphson method to find an improved value of x0. The formula for the Newton-Raphson method is:
x1 = x0 - f(x0) / f′(x0)
Substituting the values, we get:
x1 = 3.5 - f(3.5) / f′(3.5)
Calculate the values of f(3.51), f(3.5), and f′(3.5) using the given function to find the final value for x1.