68.6k views
1 vote
Under ideal conditions, a service bay at a Fast Lube can serve 7 cars per hour. The effective capacity of a Fast Lube service bay is 5.7 cars per hour, with efliciency known to be 0.85 . The minimum number of service bays Fast Lube needs to achieve an anticipated production of 100 cars per 8 -hour day = service bays (enter your response rounded up to the next whole number).

User Charleh
by
7.5k points

1 Answer

3 votes

Final answer:

The minimum number of service bays needed for Fast Lube to service 100 cars in an 8-hour day, given an effective capacity of 5.7 cars per hour, is 3 when rounded up to the next whole number.

Step-by-step explanation:

The student has asked how many service bays are needed for Fast Lube to achieve an anticipated production of 100 cars in an 8-hour day. We're given that under ideal conditions, a service bay can serve 7 cars per hour, but the effective capacity is 5.7 cars per hour with an efficiency of 0.85. To calculate the number of service bays required, we must divide the total number of cars by the number of cars that can be serviced in an 8-hour day by one bay, then round up to the nearest whole number.

First, let's calculate the total service capacity of one bay in an 8-hour day: 5.7 cars/hour × 8 hours/day = 45.6 cars/day (per bay).

Now, to find the number of bays needed to service 100 cars in one day: 100 cars/day ÷ 45.6 cars/day = 2.19, which we round up to 3 service bays.

User OldCurmudgeon
by
8.6k points