210k views
4 votes
Consider the initial value problem

dx/dt = [-9 -3 30 9]x, x(0) = [6 7]

Solve the initial value problem. Give your solution in real form.

x(t) = [ _____ _____]

User Ernad
by
8.4k points

1 Answer

3 votes

(a) The eigenvalues are
$\lambda_1 = 3$ and
$\lambda_2 = -6$ and the corresponding eigenvectors are
$\vec{r}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and
$\vec{r}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(b) The real form is:


$$x(t) = \begin{bmatrix} 5e^(3t) + 3e^(-6t) \\ 10e^(3t) - 3e^(-6t) \end{bmatrix}$$

The initial value problem is:


$(dx)/(dt) = \begin{bmatrix} -9 & -3 \\ 30 & 9 \end{bmatrix} x, \quad x(0) = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$$

(a) We need to find the eigenvalues and eigenvectors for the coefficient matrix. The eigenvalues are
$\lambda_1 = 3$ and
$\lambda_2 = -6$, and the corresponding eigenvectors are
$\vec{r}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and
$\vec{r}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(b) To solve the initial value problem, we can use the general solution of the homogeneous equation:


$$x(t) = c_1 e^(\lambda_1 t) \vec{r}_1 + c_2 e^(\lambda_2 t) \vec{r}_2$$

Then we can use the initial condition to find the values of
$c_1$ and
$c_2$. Substituting t = 0
$x(t) = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$ into the general solution, we get the system of equations:


\begin{align*}c_1 + c_2 &= 8 \\2c_1 - c_2 &= 2\end{align*}

Solving this system, we find that $c_1 = 5$ and $c_2 = 3$. Therefore, the solution to the initial value problem is:


$$x(t) = 5e^(3t) \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3e^(-6t) \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

In real form, this is:


$$x(t) = \begin{bmatrix} 5e^(3t) + 3e^(-6t) \\ 10e^(3t) - 3e^(-6t) \end{bmatrix}$$

Consider the initial value problem dx/dt = [-9 -3 30 9]x, x(0) = [6 7] Solve the initial-example-1
User Michael Feihstel
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories