210k views
4 votes
Consider the initial value problem

dx/dt = [-9 -3 30 9]x, x(0) = [6 7]

Solve the initial value problem. Give your solution in real form.

x(t) = [ _____ _____]

User Ernad
by
8.4k points

1 Answer

3 votes

(a) The eigenvalues are
$\lambda_1 = 3$ and
$\lambda_2 = -6$ and the corresponding eigenvectors are
$\vec{r}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and
$\vec{r}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(b) The real form is:


$$x(t) = \begin{bmatrix} 5e^(3t) + 3e^(-6t) \\ 10e^(3t) - 3e^(-6t) \end{bmatrix}$$

The initial value problem is:


$(dx)/(dt) = \begin{bmatrix} -9 & -3 \\ 30 & 9 \end{bmatrix} x, \quad x(0) = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$$

(a) We need to find the eigenvalues and eigenvectors for the coefficient matrix. The eigenvalues are
$\lambda_1 = 3$ and
$\lambda_2 = -6$, and the corresponding eigenvectors are
$\vec{r}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and
$\vec{r}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(b) To solve the initial value problem, we can use the general solution of the homogeneous equation:


$$x(t) = c_1 e^(\lambda_1 t) \vec{r}_1 + c_2 e^(\lambda_2 t) \vec{r}_2$$

Then we can use the initial condition to find the values of
$c_1$ and
$c_2$. Substituting t = 0
$x(t) = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$ into the general solution, we get the system of equations:


\begin{align*}c_1 + c_2 &= 8 \\2c_1 - c_2 &= 2\end{align*}

Solving this system, we find that $c_1 = 5$ and $c_2 = 3$. Therefore, the solution to the initial value problem is:


$$x(t) = 5e^(3t) \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3e^(-6t) \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

In real form, this is:


$$x(t) = \begin{bmatrix} 5e^(3t) + 3e^(-6t) \\ 10e^(3t) - 3e^(-6t) \end{bmatrix}$$

Consider the initial value problem dx/dt = [-9 -3 30 9]x, x(0) = [6 7] Solve the initial-example-1
User Michael Feihstel
by
8.1k points

No related questions found