34.0k views
5 votes
Find (a) the characteristic equationand (b) the eigenvalues (and corresponding eigenvectors)of the matrix.

[2 3 1]
A = [0 -1 2]
{0 0 3]

User PaSTE
by
7.6k points

1 Answer

2 votes

The characteristic equation is
\((\lambda - 2)(\lambda + 1)(\lambda - 3) = 0\). The eigenvalues are
\(\lambda_1 = 2\), \(\lambda_2 = -1\), and \(\lambda_3 = 3\), with corresponding eigenvectors.

Let's go through the calculations.

(a) Characteristic Equation:

The characteristic equation is given by
\(\det(A - \lambda I) = 0\), where A is the matrix,
\(\lambda\) is the eigenvalue, and I is the identity matrix.


\[ A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 3 \end{bmatrix} \]\[ \det\left(\begin{bmatrix} 2-\lambda & 3 & 1 \\ 0 & -1-\lambda & 2 \\ 0 & 0 & 3-\lambda \end{bmatrix}\right) = 0 \]

Calculate the determinant:


\[ (2-\lambda) \cdot ((-1-\lambda) \cdot (3-\lambda) - 2 \cdot 0) = 0 \]

Solve for
\(\lambda\) to find the characteristic equation.

(b) Eigenvalues (and Corresponding Eigenvectors):

Solve the characteristic equation to find the eigenvalues
\(\lambda\). Once you have the eigenvalues, substitute them back into the equation
\((A - \lambda I)\mathbf{x} = \mathbf{0}\) to find the corresponding eigenvectors
(\(\mathbf{x}\)).

Let's proceed with the calculations:


\[ (2-\lambda)((-1-\lambda)(3-\lambda)) = 0 \]

Expand and simplify:


\[ (2-\lambda)(\lambda^2 - 2\lambda - 3) = 0 \]

Now, solve for
\(\lambda\):

1.
\(2 - \lambda = 0 \Rightarrow \lambda_1 = 2\)

2.
\(\lambda^2 - 2\lambda - 3 = 0\) (factor or use quadratic formula to find \(\lambda_2\) and \(\lambda_3\))

Now, for each eigenvalue, solve the system of equations:

1. For
\(\lambda_1 = 2\):


\[ (A - 2I)\mathbf{x}_1 = \mathbf{0} \]

2. For
\(\lambda_2\) and \(\lambda_3\):


\[ (A - \lambda_i I)\mathbf{x}_i = \mathbf{0} \] (where \(i = 2, 3\))

(a) Characteristic Equation:


\[ (2-\lambda)(\lambda^2 - 2\lambda - 3) = 0 \]

Expanding and simplifying:


\[ (2-\lambda)(\lambda^2 - 2\lambda - 3) = 0 \]\[ (2-\lambda)(\lambda+1)(\lambda-3) = 0 \]

So, the characteristic equation is:


\[ (\lambda - 2)(\lambda + 1)(\lambda - 3) = 0 \]

(b) Eigenvalues and Corresponding Eigenvectors:

1. For
\(\lambda_1 = 2\):


\[ (A - 2I)\mathbf{x}_1 = \mathbf{0} \]\[ \begin{bmatrix} 0 & 3 & 1 \\ 0 & -3 & 2 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x}_1 = \mathbf{0} \]\[ \begin{bmatrix} 0 & 3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}_1 = \mathbf{0} \]

The solution is
\(x_(11) = 1\), \(x_(12) = 0\), \(x_(13) = -3\).

2. For
\(\lambda_2 = -1\):


\[ (A + I)\mathbf{x}_2 = \mathbf{0} \]\[ \begin{bmatrix} 3 & 3 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 4 \end{bmatrix} \mathbf{x}_2 = \mathbf{0} \]\[ \begin{bmatrix} 3 & 3 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}_2 = \mathbf{0} \]

The solution is
\(x_(21) = -1\), \(x_(22) = 1\), \(x_(23) = 0\).

3. For
\(\lambda_3 = 3\):


\[ (A - 3I)\mathbf{x}_3 = \mathbf{0} \]\[ \begin{bmatrix} -1 & 3 & 1 \\ 0 & -4 & 2 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}_3 = \mathbf{0} \]

The solution is
\(x_(31) = 1\), \(x_(32) = (3)/(4)\), \(x_(33) = (1)/(2)\).

So, the eigenvalues are
\(\lambda_1 = 2\), \(\lambda_2 = -1\), and \(\lambda_3 = 3\), and the corresponding eigenvectors are
\(\mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}\), \(\mathbf{x}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}\), and \(\mathbf{x}_3 = \begin{bmatrix} 1 \\ (3)/(4) \\ (1)/(2) \end{bmatrix}\).

User Arter
by
8.6k points