The characteristic equation is
. The eigenvalues are
, with corresponding eigenvectors.
Let's go through the calculations.
(a) Characteristic Equation:
The characteristic equation is given by
, where A is the matrix,
is the eigenvalue, and I is the identity matrix.
![\[ A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 3 \end{bmatrix} \]\[ \det\left(\begin{bmatrix} 2-\lambda & 3 & 1 \\ 0 & -1-\lambda & 2 \\ 0 & 0 & 3-\lambda \end{bmatrix}\right) = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/e79zui6gguyrqp5zbbn9dvdrtu6gaw02wf.png)
Calculate the determinant:
![\[ (2-\lambda) \cdot ((-1-\lambda) \cdot (3-\lambda) - 2 \cdot 0) = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/kfurcalgwf2r8vw9gklv55u9lwxm5pic8j.png)
Solve for
to find the characteristic equation.
(b) Eigenvalues (and Corresponding Eigenvectors):
Solve the characteristic equation to find the eigenvalues
. Once you have the eigenvalues, substitute them back into the equation
to find the corresponding eigenvectors
.
Let's proceed with the calculations:
![\[ (2-\lambda)((-1-\lambda)(3-\lambda)) = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/paawqderx5j2qw90o1niv3u8rinofhulfq.png)
Expand and simplify:
![\[ (2-\lambda)(\lambda^2 - 2\lambda - 3) = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/be1lomz1cfkdr29dufg6h29vn2jwj0qnxe.png)
Now, solve for
:
1.

2.

Now, for each eigenvalue, solve the system of equations:
1. For
:
![\[ (A - 2I)\mathbf{x}_1 = \mathbf{0} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/za8pdlv07nhvo4pogt7mvqj83nqhrmefk4.png)
2. For
:
![\[ (A - \lambda_i I)\mathbf{x}_i = \mathbf{0} \] (where \(i = 2, 3\))](https://img.qammunity.org/2024/formulas/mathematics/high-school/18ozr9zkonoqj6l16p1iisi8usv0j4r810.png)
(a) Characteristic Equation:
![\[ (2-\lambda)(\lambda^2 - 2\lambda - 3) = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/be1lomz1cfkdr29dufg6h29vn2jwj0qnxe.png)
Expanding and simplifying:
![\[ (2-\lambda)(\lambda^2 - 2\lambda - 3) = 0 \]\[ (2-\lambda)(\lambda+1)(\lambda-3) = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c1jiic8z5s14mgowfzkwzsz9czvkudvcqx.png)
So, the characteristic equation is:
![\[ (\lambda - 2)(\lambda + 1)(\lambda - 3) = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/y7b2k4ql0wawpnk9zxvwgu03alftpujp2z.png)
(b) Eigenvalues and Corresponding Eigenvectors:
1. For
:
![\[ (A - 2I)\mathbf{x}_1 = \mathbf{0} \]\[ \begin{bmatrix} 0 & 3 & 1 \\ 0 & -3 & 2 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{x}_1 = \mathbf{0} \]\[ \begin{bmatrix} 0 & 3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}_1 = \mathbf{0} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/nqcgosifi0l0plne73hmr5xyk04eje7u7v.png)
The solution is
.
2. For
:
![\[ (A + I)\mathbf{x}_2 = \mathbf{0} \]\[ \begin{bmatrix} 3 & 3 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 4 \end{bmatrix} \mathbf{x}_2 = \mathbf{0} \]\[ \begin{bmatrix} 3 & 3 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}_2 = \mathbf{0} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/vam8c3ndzd5r49nxtv8pueq7atcv56o5tl.png)
The solution is
.
3. For
:
![\[ (A - 3I)\mathbf{x}_3 = \mathbf{0} \]\[ \begin{bmatrix} -1 & 3 & 1 \\ 0 & -4 & 2 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}_3 = \mathbf{0} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/a051mqc0u63ps0w7vvbwwwlmows97zo5b8.png)
The solution is
.
So, the eigenvalues are
, and the corresponding eigenvectors are
.