Final answer:
The product sin(7x) sin(4x) can be simplified using product-to-sum identities, resulting in the expression ½(cos(3x) - cos(11x)).
Step-by-step explanation:
The product of sin(7x) sin(4x) can be expressed as a sum or difference using trigonometric identities.
We use the product-to-sum identities, specifically the identity sin A sin B = ½(cos(A-B) - cos(A+B)).
Applying this identity to sin(7x) sin(4x), we get:
- ½(cos(7x-4x) - cos(7x+4x))
- ½(cos(3x) - cos(11x))
Therefore, the expression sin(7x) sin(4x) sin(7x) sin(4x) simplifies to ½(cos(3x) - cos(11x)).