f(x) = 8 + Σ (-4/nπ) * sin(nπ) * cos(nπx/4) on (0, 4). Fourier cosine series for f(x) = 4 - x.
Ao = 8
An = (-4/nπ) * sin(nπ)
Let’s find the Fourier cosine series for the function f(x) = 4 - x defined on the interval (0, 4).
Here's how we can solve this problem:
1. Find the Fourier coefficients:
Ao = (2/pi) * ∫f(x) dx from 0 to 4
An = (1/pi) * ∫f(x) * cos(nπx/4) dx from 0 to 4, for n ≥ 1
2. Substitute the function f(x) and integrate:
Ao = (2/pi) * ∫(4 - x) dx from 0 to 4
An = (1/pi) * ∫(4 - x) * cos(nπx/4) dx from 0 to 4
3. Simplify the integrals and solve for Ao and An:
By solving these integrals, we get:
Ao = 8
An = (-4/nπ) * sin(nπ)
4. Write the Fourier cosine series:
f(x) = Ao + ∑ An cos(nπx/4)
Replace Ao and An with the values we found:
f(x) = 8 + ∑ (-4/nπ) * sin(nπ) * cos(nπx/4)
Therefore, the Fourier cosine series for the function f(x) = 4 - x defined on the interval (0, 4) is:
f(x) = 8 + ∑ (-4/nπ) * sin(nπ) * cos(nπx/4)