168k views
0 votes
Evaluate the indefinite integral given below.

∫ (10-20x⁴)csc²(2x⁵-5x)dx
provide your answer below:
∫ (10-20x⁴)csc²(2x⁵-5x)dx

User Fengzmg
by
8.1k points

1 Answer

5 votes

Final answer:

Using substitution and using trigonometric identities, we can rewrite the integral and integrate each term separately to find the final solution as (2x⁵ - 5x) - cot(2x⁵ - 5x) + C.

Step-by-step explanation:

To evaluate the given integral: ∫ (10-20x⁴)csc²(2x⁵-5x) dx

We can use substitution to solve this integral.

Let u = 2x⁵ - 5x, then differentiate u with respect to x to find du/dx = 10x⁴ - 5.

Now, we can rewrite the integral in terms of u:

∫(10-20x⁴)csc²(2x⁵-5x) dx

= ∫csc²(u) du.

Using a trigonometric identity, csc²(u) = 1 + cot²(u), we can rewrite the integral as ∫(1 + cot²(u)) du.

Integrating each term separately, we get:

∫1 du = u + C1

∫cot²(u) du = -cot(u) + C2

Therefore, the final solution is:

∫(10-20x⁴)csc²(2x⁵-5x) dx

= u - cot(u) + C

Substituting u back in terms of x, we have:

∫(10-20x⁴)csc²(2x⁵-5x) dx

= (2x⁵ - 5x) - cot(2x⁵ - 5x) + C

User Scott Weldon
by
8.5k points