163k views
1 vote
Supposons que pour chaque entier n∈N,A nsoit un sous-ensemble compact non-vide de R d, tel que A₁⊇A₂ ⊇⋯⊇Aₙ⊇…. . Montrez que l'intersection de tous ces ensemble est non videm c'est à dire ⋂[infinity]ₙ₌₁.Aₙ ≠

0 Indication : Le théorème de Heine-Borel n'est pas très utile ici. Il vaut mieux construire une suite bien choisit et extraire une sous-suite convergente en utilisant la compacité.

1 Answer

5 votes

Final answer:

To prove that the intersection of these sets is non-empty, we can construct a well-chosen sequence and extract a convergent subsequence using the compactness property.

Step-by-step explanation:

We are given that for each positive integer n, An is a non-empty compact subset of Rd, such that A1⊇A2 ⊇⋯⊇An⊇…. We want to show that the intersection of all these sets is non-empty, that is, ⋂[infinity]ₙ₌₁.An ≠ 0. To prove this, we can construct a well-chosen sequence and extract a convergent subsequence using the compactness property.

User Glen Low
by
8.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories