80.6k views
4 votes
2.9.5 Does the following sequence converge? (2 · 4 · 6 · · · · ·

(2n) · 1)/ (1 · 3 · 5 · · · · · (2n − 1) · n^2)

User JasonOng
by
8.3k points

1 Answer

4 votes

Final answer:

The given sequence (2 · 4 · 6 · · · · ·(2n) · 1) / (1 · 3 · 5 · · · · · (2n − 1) · n^2) converges to 1.

Step-by-step explanation:

The given sequence is (2 · 4 · 6 · · · · ·(2n) · 1) / (1 · 3 · 5 · · · · · (2n − 1) · n^2).

To determine if the sequence converges, we can simplify the expression. By factoring out a 2 from the numerator and a n from the denominator, the expression becomes:

(2/n) · (1 · 2 · 3 · · · · ·(2n-1) · n) / (1 · 3 · 5 · · · · · (2n − 1) · n).

Notice that the terms in the numerator and denominator are the same, except for the first term (2/n). As n approaches infinity, the first term becomes closer to 0. Therefore, the entire expression approaches 1 as n increases. So, yes, the sequence converges to 1.

User Geochanto
by
7.7k points