Final answer:
The expression √(2√32/√3 + 3/8) simplifies to 2√(2/3) + √(3/8).
Step-by-step explanation:
The expression √(2√32/√3 + 3/8) can be simplified step by step.
First, let's simplify the terms inside the square root:
2√32/√3 + 3/8 = 2√(32/3) + 3/8 = 2√(32/3) + (3/8)√1
Next, let's simplify the square root of 32/3:
√(32/3) = √(32) / √(3) = 4√2 / √3
Now, let's substitute this value back into the original expression:
√(2√32/√3 + 3/8) = √(2(4√2 / √3) + (3/8)√1) = √(8√2 / √3 + 3/8)
Finally, let's combine the terms inside the square root:
√(8√2 / √3 + 3/8) = √(8√2 / √3) + √(3/8) = √(8/3)√2 + √(3/8) = 2√(2/3) + √(3/8)
Therefore, the expression simplifies to 2√(2/3) + √(3/8).