184k views
1 vote
Given that i² = − 1, simplify
1-i (over)
-3-5i

Given that i² = − 1, simplify 1-i (over) -3-5i-example-1

1 Answer

6 votes

Answer:


\Large \textsf{Read below}

Explanation:


\Large \text{$ \sf (1 - i)/(-3-5i) = \left((1 - i)/(-3-5i)\right).\left((-3 + 5i)/(-3+5i)\right)$}


\Large \text{$ \sf (1 - i)/(-3-5i) = (-3 + 5i + 3i -5i^2)/(9 - 15i + 15i -25i^2)$}


\Large \text{$ \sf i^2 = -1$}


\Large \text{$ \sf (1 - i)/(-3-5i) = (-3 + 5i + 3i -5(-1))/(9 - 15i + 15i -25(-1))$}


\Large \text{$ \sf (1 - i)/(-3-5i) = (-3 + 5i + 3i +5)/(9 - 15i + 15i +25)$}


\Large \text{$ \sf (1 - i)/(-3-5i) = (2 + 8i)/(34)$}


\Large \boxed{\boxed{\text{$ \sf (1 - i)/(-3-5i) = (1)/(17) + (4)/(17)\:i$}}}

User Vishal Patel
by
8.6k points