Final answer:
To find the mass of a 1.0 ft x 1.0 ft x 1.0 ft cube of iridium in pounds, you need to calculate the volume of the cube in cubic centimeters, then multiply it by the density of iridium to find the mass in grams. Finally, convert the mass from grams to pounds using the conversion factor. The mass of the cube is approximately 1404.5 pounds.
Step-by-step explanation:
To find the mass of a 1.0 ft x 1.0 ft x 1.0 ft cube of iridium in pounds, we first need to find the volume of the cube. Since each side of the cube is 1.0 ft, the volume can be calculated as:
Volume = length x width x height
Volume = 1.0 ft x 1.0 ft x 1.0 ft = 1.0 ft³
Next, we convert the volume from cubic feet to cubic centimeters using the conversion factor: 1 ft³ = 28316.8466 cm³.
Volume = 1.0 ft³ x 28316.8466 cm³/ft³ = 28316.8466 cm³
Finally, we can calculate the mass of the cube using the density of iridium:
Mass = density x volume
Mass = 22.5 g/cm³ x 28316.8466 cm³ = 636725.9045 g
Now, we can convert the mass from grams to pounds using the conversion factor: 1 lb = 453.6 g.
Mass = 636725.9045 g x 1 lb/453.6 g = 1404.4988947 lb
Therefore, the mass of a 1.0 ft x 1.0 ft x 1.0 ft cube of iridium is approximately 1404.5 pounds.