54.3k views
0 votes
Find sin (A + B) and sin (A - B) if sin A = 15/17 and cos B = 9/15

Find sin (A + B) and sin (A - B) if sin A = 15/17 and cos B = 9/15-example-1

1 Answer

5 votes

Answer:


\sf \sin(A + B) = (77)/(85)


\sf \sin(A - B) = (13)/(85)

Explanation:

To find
\sf \sin(A + B) and
\sf \sin(A - B), we can use the sum and difference formulas for sine:


\sf \sin(A + B) = \sin A \cdot \cos B + \cos A \cdot \sin B


\sf \sin(A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B

Given that
\sf \sin A = (15)/(17) and
\sf \cos B = (9)/(15), we need to find
\sf \cos A and
\sf \sin B.

First, let's find
\sf \cos A using the fact that
\sf \sin^2 A + \cos^2 A = 1:


\sf \cos A = √(1 - \sin^2 A)\\ = \sqrt{1 - \left((15)/(17)\right)^2} \\= \sqrt{(17^2 - 15^2)/(17^2)}\\ = \sqrt{(289 - 225)/(289)}\\ = \sqrt{(64)/(289)}\\ = (8)/(17)

Now, let's find
\sf \sin B using the fact that
\sf \sin^2 B + \cos^2 B = 1:


\sf \sin B = √(1 - \cos^2 B) \\= \sqrt{1 - \left((9)/(15)\right)^2}\\ = \sqrt{1 - (81)/(225)} \\= \sqrt{(225 - 81)/(225)} \\= \sqrt{(144)/(225)} \\= (12)/(15)

Now, we can substitute these values into the sum and difference formulas:


\sf \sin(A + B) = (15)/(17) \cdot (9)/(15) + (8)/(17) \cdot (12)/(15)


\sf \sin(A - B) = (15)/(17) \cdot (9)/(15) - (8)/(17) \cdot (12)/(15)

Let's simplify these expressions:


\sf \sin(A + B) = (135 + 96)/(255) = (231)/(255) = (77)/(85)


\sf \sin(A - B) = (135 - 96)/(255) = (39)/(255) = (13)/(85)

User Ken Chan
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories