Final answer:
The second-order Taylor formula for the given function f(x, y) = 9x² + y² + 1 about the point (x0, y0) is f(h1, h2) = 9 + 9h₁² + 9h₂² + R2(0, h).
Step-by-step explanation:
The second-order Taylor formula for the given function f(x, y) = 9x² + y² + 1 about the point (x0, y0) is given by:
f(h1, h2) = f(x0, y0) + f1(x0, y0)(h1-x0) + f2(x0, y0)(h2-y0) + (1/2)f11(x0, y0)(h1-x0)² + f12(x0, y0)(h1-x0)(h2-y0) + (1/2)f22(x0, y0)(h2-y0)² + R2(0, h)
In this case, since x0 = 0 and y0 = 0, the second-order Taylor formula becomes:
f(h1, h2) = 9 + 9h₁² + 9h₂² + R2(0, h)