19.8k views
1 vote
water is flowing at the rate of 25 km/h through a pipe of diameter 22 cm into a cuboidal pond which is 60 m long and 54 m wide. in what time will the level of water in pond rise by 50 cm?

User DRobinson
by
8.3k points

1 Answer

3 votes

Final answer:

The water level in the pond will rise by 50 cm in approximately 7.50 seconds.

Step-by-step explanation:

To find the time it takes for the water level in the pond to rise by 50 cm, we can use the equation:

Volume of water = Area of the pipe x Velocity of water

First, we need to calculate the area of the pipe:

Area = π x (radius)^2 = π x (diameter/2)^2

Area = π x (22 cm/2)^2

Area = π x 11 cm^2

Next, we convert the velocity from km/h to cm/s:

Velocity = 25 km/h x 100000 cm/km / 3600 s/h

Velocity ≈ 694 cm/s

Now, we can substitute these values into the equation:

Volume of water = π x 11 cm^2 x 694 cm/s

Volume of water = 255958 cm^3

To find the time, we divide the volume of water by the cross-sectional area of the pond:

Time = Volume of water / (Length x Width)

Time = 255958 cm^3 / (60 m x 100 cm/m x 54 m x 100 cm/m)

Time ≈ 7.50 seconds

Therefore, it will take approximately 7.50 seconds for the water level in the pond to rise by 50 cm.

User Ronze
by
8.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.