Final answer:
Rama and Rami's combined work rate is 3/10 of the work per day, and with Snooty, they complete 1/2 of the work per day. Subtracting Rama and Rami's rate from the trio's rate, Snooty's rate is 1/5 of the work per day. Thus, Snooty's share of the Rs. 400 payment for completing the work in 2 days is Rs. 100.
Step-by-step explanation:
The question provides a scenario where Rama can complete a piece of work in 10 days, and Rami can do it in 5 days. To find the share of Snooty's remuneration when Rama, Rami, and Snooty complete the work together in 2 days for a total payment of Rs. 400, we must first determine the work contribution of each person.
Rama's work rate is 1/10 of the work per day, and Rami's work rate is 1/5 of the work per day. Together, they can finish (1/10 + 1/5) of the work in one day. This simplifies to 3/10 of the work per day when combined. To find the work capacity of all three (Rama, Rami, and Snooty), we use the fact that they finished the work in 2 days, which means they completed 1/2 of the work per day.
To determine Snooty's rate, we subtract the combined rate of Rama and Rami from the total rate of all three, which gives us 1/2 - 3/10 = 1/5 of the work per day for Snooty alone, equal to Rami's rate. Thus, Rami and Snooty have the same rate of work and would evenly split the remaining half of the payment (Rs. 400 - Rs. 200 for Rama) after Rama's share is allocated, based on the initial rates. Snooty's share would therefore be Rs. 100.