224k views
4 votes
TWO QUESTIONS NEED HELP PRONTO

1. Describe how each of the numbers in the function g(x) = .24(2)^x+3 - 4 transforms the graph of f(x) = 2^x.



2. You have 2 options to invest some money in an account. The first account, you can invest $100 with an interest rate of 3%, using the equation y = 100(1.03)^x. In the second account, you can invest $125 with an interest rate of 1.5%, using the equation y = 125(1.015)^x. If x is representing time in years and y represents the total amount of money in the account, which account would earn you more after 15 years?



Be sure to show your work and explain everything thoroughly!

TWO QUESTIONS NEED HELP PRONTO 1. Describe how each of the numbers in the function-example-1

1 Answer

4 votes

The transformation from g(x) to f(x) includes

  • Translate to the right 3 units
  • Translation of 4 units up
  • A vertical compression of 1/24

Using the equation y = 100(1.03)ˣ will earn more

How to describe the transformation

The function g(x) = 24(2)ˣ⁺³ - 4 transforms to the graph of f(x) = 2ˣ following the procedures stated

g(x) = 24(2)ˣ⁺³ - 4

Translate to the right 3 units, so we have g(x) = 24(2)ˣ - 4

Translation of 4 units up, so we have g(x) = 24(2)ˣ

Apply a vertical compression of 1/24, so we have g(x) = (2)ˣ = f(x) = 2ˣ

Comparison to find a the account that will earn more

For x = 15

y = 100(1.03)¹⁵ = 155.8

y = 125(1.015)¹⁵ = 149.49

User Hookenz
by
7.7k points