31.8k views
5 votes
What is tan -1 (1) rounded to the nearest degree?

1 Answer

7 votes

Final answer:

The angle tan^-1(1) rounded to the nearest degree is 45 degrees.

Step-by-step explanation:

The function tan^-1(xs) is the inverse tangent function, also known as arctan, which returns the angle whose tangent is a given value xs in radians. In this case, the given value is 1. To find the angle in degrees, you can use the formula degrees = radians*180/π.

So, tan^-1(1) in radians is equal to π/4. Converting this to degrees, we have degrees = (π/4)*180/π, which simplifies to 45 degrees.

Therefore, tan^-1(1) rounded to the nearest degree is 45 degrees.

User Yuli
by
9.1k points