72.2k views
4 votes
The length of a rectangle is(x+7) inches and the width is(x-3) inches.Each dimensions is increased by 4 inches what is the rectangle new area?

User Dwilbank
by
8.4k points

2 Answers

4 votes

Final answer:

To find the new area of the rectangle with length (x+7) and width (x-3), after increasing each dimension by 4 inches, calculate the new dimensions to be (x+11) and (x+1) inches, respectively. The new area is the product of these dimensions.

Step-by-step explanation:

The subject of the question is Mathematics, and it is likely at the middle school level. To find the new area of the rectangle after each dimension has been increased by 4 inches, first calculate the new length and width. The original length is (x + 7) inches; when increased by 4 inches, it becomes (x + 7 + 4) or (x + 11) inches. Similarly, the original width is (x - 3) inches; when increased by 4 inches, it becomes (x - 3 + 4) or (x + 1) inches. The new area of the rectangle is then found by multiplying the new length and width: (x + 11) multiplied by (x + 1).

User Lqbweb
by
8.5k points
3 votes

Final answer:

By increasing both the length and the width of the rectangle by 4 inches, the new area can be calculated as the product of the increased dimensions: (x+11)(x+1), which simplifies to x² + 12x + 11 square inches.

Step-by-step explanation:

The student's question is asking for the new area of a rectangle once its dimensions have been increased. To find the new area, we first increase each dimension by 4 inches. The original length of the rectangle is (x+7) inches and the width is (x-3) inches. After increasing each by 4 inches, the new length becomes (x+7+4) or (x+11) inches, and the new width becomes (x-3+4) or (x+1) inches.

To find the new area, we multiply the new length by the new width:

  • New Area = (x+11) * (x+1)

Expanding this multiplication:

  • New Area = x² + x + 11x + 11
  • New Area = x² + 12x + 11

Therefore, the new area of the rectangle is x² + 12x + 11 square inches.

User Logan Lee
by
7.5k points