Answer:
16−30i
Explanation:
Use Square of Difference: {(a-b)}^{2}={a}^{2}-2ab+{b}^{2}(a−b)
2
=a
2
−2ab+b
2
.
{5}^{2}-2\times 5\times 3\imath +{(3\imath )}^{2}
5
2
−2×5×3+(3)
2
2 Simplify {5}^{2}5
2
to 2525.
25-2\times 5\times 3\imath +{(3\imath )}^{2}
25−2×5×3+(3)
2
3 Use Multiplication Distributive Property: {(xy)}^{a}={x}^{a}{y}^{a}(xy)
a
=x
a
y
a
.
25-2\times 5\times 3\imath +{3}^{2}{\imath }^{2}
25−2×5×3+3
2
2
4 Simplify {3}^{2}3
2
to 99.
25-2\times 5\times 3\imath +9{\imath }^{2}
25−2×5×3+9
2
5 Use Square Rule: {i}^{2}=-1i
2
=−1.
25-2\times 5\times 3\imath +9\times -1
25−2×5×3+9×−1
6 Simplify 2\times 5\times 3\imath2×5×3 to 30\imath30.
25-30\imath +9\times -1
25−30+9×−1
7 Simplify 9\times -19×−1 to -9−9.
25-30\imath -9
25−30−9
8 Collect like terms.
(25-9)-30\imath
(25−9)−30
9 Simplify.
16-30\imath
16−30