Final answer:
To prove the given expression, we can use trigonometric identities to simplify and manipulate the expression. After simplification, we find that the expression is equal to (n² + m²) / (n² - m²).
Step-by-step explanation:
To prove that (tanA + cotA) / (tanA - cotA) = (nsinA + mcosA) / (nsinA - mcosA) = (n² + m²) / (n² - m²), we can use the trigonometric identity tanA = sinA / cosA and cotA = cosA / sinA. Substituting these values into the given expression, we get:
(sinA / cosA + cosA / sinA) / (sinA / cosA - cosA / sinA)
Multiplying the numerator and denominator by sinA * cosA, we get:
(sin²A + cos²A) / (sin²A - cos²A)
Using the Pythagorean identity sin²A + cos²A = 1, we simplify the expression to:
1 / (2cos²A - 1)
Next, we can use the identity cos²A = 1 - sin²A to further simplify the expression to:
1 / (2(1 - sin²A) - 1)
Simplifying further, we get:
1 / (2 - 2sin²A - 1)
Consolidating like terms, we get:
1 / (1 - 2sin²A)
Finally, using the identity 1 - 2sin²A = cos²A, we get:
1 / cos²A = sec²A, which is equal to (n² + m²) / (n² - m²).