The simplified expressions are
![\[A = (x-y)/(x+2), \quad B = (-1)/(y(y+x))\cdot(x-y)/(2y), \quad C = ((x-2)(x^2+x-2))/(2x(x-1)(x+1))\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/dqsnptszc7tz9cb0cr5r2ykpazwdqgvjzm.png)
Let's simplify each expression step by step:

1. Combine the fractions in the numerator:
![\[A = (x-y)/(xy-y^2+2x)/(x^2y-x^2y)/(x^2-2xy+y^2)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/oe9ovvr2zdhzjjxybcfhy0eywf8zp7fgrs.png)
2. Invert and multiply to divide fractions:
![\[A = (x-y)/(xy-y^2+2x)\cdot(x^2-2xy+y^2)/(x^2y-x^2y)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/nzul349ukydrem579nuvymq2jkaukmv929.png)
3. Factor the numerator and denominator:
![\[A = ((x-y)(x-y))/(x(x-y)(x-y)+2(x-y)(x-y))\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/fnmvarlxf4ck0ya4f9rtx2g46bmyajar4d.png)
4. Cancel common factors:
![\[A = (x-y)/(x+2)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/wk8zmcibi32d18ff6p0w7tavwfrtshd5ou.png)

1. Combine the fractions in the numerator:
![\[B = ((x+y-(x-y))/(2x-2y+2x+2y-2y^2))/(y^2-x^2)/(2y)/(x-y)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/psw2j9s8l5rvkcewrdrx954xbl99glf6ya.png)
2. Combine like terms:
![\[B = ((2y)/(-2y^2))/(y^2-x^2)/(2y)/(x-y)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hpvxkexvldpens5dlmusq0m21d7at5g0pi.png)
3. Simplify the expression:
![\[B = (-1)/(y(y+x))/(2y)/(x-y)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/b7kps7uaott19uooqdwjovu5q1uzerxulq.png)
4. Invert and multiply to divide fractions:
![\[B = (-1)/(y(y+x))\cdot(x-y)/(2y)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c58mbr9rjwdpg15cn9g0cw6ba7p29kx9u1.png)

1. Combine the fractions in the numerator:
![\[C = ((x(x^2+x+1)-4x(x-1)-(2x+1)(x-1))/(x(x-1)(x^2-1)))/(2)+(2x+4)/(x-1)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/v1rn4qzx35pjr137lnd68ghfqe0vrlf34r.png)
2. Combine like terms in the numerator:
![\[C = (x^3+x^2+x-4x^2+4x-2x-1)/(2x(x-1)(x+1))+(2x+4)/(x-1)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/eomgbwlae0mcn21zdcxat2wr79zlykc0lp.png)
3. Combine the terms in the numerator:
![\[C = (x^3-3x^2+4)/(2x(x-1)(x+1))+(2x+4)/(x-1)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/9y14ztiecfp5s508rammhl200nft7s02uy.png)
4. Find a common denominator:
![\[C = (x^3-3x^2+4+2x(x+1)(x-1))/(2x(x-1)(x+1))\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/y7zi4uy5pzxj4psrwxekpdnw54gmzs8tpe.png)
5. Combine the numerators:
![\[C = (x^3-3x^2+4+2x(x^2-1))/(2x(x-1)(x+1))\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/bhfw4g98oqmlaq58jvc6vresfz9vfq8lhe.png)
6. Factor the numerator:
![\[C = ((x-2)(x^2+x-2))/(2x(x-1)(x+1))\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/z41ntft7ehlxacm4dn9thdrz63phz8xdod.png)
In summary:
The simplified expression are:
![\[A = (x-y)/(x+2), \quad B = (-1)/(y(y+x))\cdot(x-y)/(2y), \quad C = ((x-2)(x^2+x-2))/(2x(x-1)(x+1))\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/dqsnptszc7tz9cb0cr5r2ykpazwdqgvjzm.png)
The probable question may be:
Simplify the expression:
A= (x/xy-y^2+2x-y/xy-x^2). x^2y-x^2y/x^2-2xy+y^2
B= (x+y/2x-2y-x-y/2x+2y-2y^2/y^2-x^2):2y/x-y
C= (x/x-1-4x/x^2+x+1-2x+1/x^2-1).2+2x+4/x-1