7.2k views
23 votes
In the adjoining equilateral triangle PQR , X , Y and Z are the middle points of the sides PQ , QR and RP respectively. Prove that XYZ is also an equilateral triangle.

~Thanks in advance ! ​

In the adjoining equilateral triangle PQR , X , Y and Z are the middle points of the-example-1

2 Answers

4 votes

Answer:

this is your answer. thanks, for great point

In the adjoining equilateral triangle PQR , X , Y and Z are the middle points of the-example-1
User Junchao Gu
by
5.4k points
7 votes

Answer:

See Below

Explanation:

Statements: Reasons:


1)\text{ } \Delta PQR\text{ is equilateral} Given


2)\text{ }PQ=QR=RP Definition of Equilateral


3)\text{ } X, Y, Z\text{ are the midpoints of } PQ, QR, RP Given


4)\text{ } PX=XQ Definition of Midpoint


5)PQ=PX+XQ Segment Addition


6)\text{ } PQ=2XQ Substitution


7)\text{ } QY=YR Definition of Midpoint


8)\text{ }QR=QY+YR Segment Addition


9)\text{ } QR=2QY Substitution


10)\text{ } 2XQ=2QY Substitution


11)\text{ } XQ=QY Division Property of Equality


12)\text{ } XQ=PX=QY=YR Transitive Property


13)\text{ } RZ=ZP Definition of Midpoint


14)\text{ } RP=RZ+ZP Segment Addition


15)\text{ } RP=2RZ Substitution


16)\text{ } 2XQ=2RZ Substitution


17)\text{ } XQ=RZ Substitution


18)\text{ } XQ=PX=QY=YR=RZ=ZP Transitive Property


19)\text{ } \angle Q\cong \angle R\cong \angle P Definition of Equilateral


20)\text{ } \Delta XQY\cong \Delta YRQ \cong \Delta ZPX SAS Congruence


21)\text{ } XY\cong YZ\cong ZX CPCTC


22)\text{ } \Delta XYZ\text{ is equilateral} Equilateral Triangle Theorem

User Soapergem
by
5.9k points