The correct answer is option c. 9.02 units.
To find the length of side \(a\) in the triangle with angle \(C\) measuring 30 degrees, and sides \(b = 17.4\) and \(c = 19.6\), we use the Law of Cosines:
![\[a^2 = b^2 + c^2 - 2bc \cos(A)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/iarvvo6qu0zgrrfswjmbtqu5i7rmu9owk6.png)
Substitute the given values:
![\[a^2 = 17.4^2 + 19.6^2 - 2(17.4)(19.6) \cos(30^\circ)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/l7ue3777gfurknjsv31kab7qrqo5jutjm5.png)
![\[a^2 = 302.76 + 384.16 - 2(17.4)(19.6) \cdot (√(3))/(2)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ow6zwsvaeh70m54k78fbd4kbjq76zzjivf.png)
![\[a^2 = 686.92 - 338.64 √(3)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ywh718mhb16l4mzwodlqsaicb0zmpqrnd5.png)
Now, calculate \(a\) by taking the square root:
![\[a = \sqrt{686.92 - 338.64 √(3)}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ynsez8vzd26o2ct23a4o28gjrdxtlpi55p.png)
Rounding to the nearest hundredth,

The question probable maybe:
In the triangle shown below, angle C measures 30 degrees, side b is 17.4, and side c is 19.6. Apply the Law of Cosines in the form
to determine the length of side a. Round your answer to the nearest hundredth.
Given:
- Angle C = 30 degrees
- Side b = 17.4
- Side c = 19.6
Options:
i.

ii.

iii.

iv.

Use the Law of Cosines to find the length of side a and choose the correct option.