Final Answer:
The projection matrices \
for the given eigenvalues lambda
are found as follows:
begin bmatrix
![1 & -1 \\ -1 & 1 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4w9cux314wkwd7v1duxlx66q2rgxq4wrds.png)
![\[ P_(E_1) = (1)/(2) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/89in3ua2fm74qxlmpa7ew7o7by1wrhvfpq.png)
Step-by-step explanation:
To find the projection matrices
we utilize the formula
is the multiplicity of the eigenvalue lambda and v_i is a corresponding eigenvector. Given the eigenvalues lambda
with eigenvectors
\begin{bmatrix} -
the projection matrices are computed as follows:
![\[ P_{E_(-1)} = (1)/(2) \begin{bmatrix} -(√(2))/(2) \\ (√(2))/(2) \end{bmatrix} \begin{bmatrix} -(√(2))/(2) & (√(2))/(2) \end{bmatrix} = (1)/(2) \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \]\[ P_(E_1) = (1)/(2) \begin{bmatrix} (√(2))/(2) \\ (√(2))/(2) \end{bmatrix} \begin{bmatrix} (√(2))/(2) & (√(2))/(2) \end{bmatrix} = (1)/(2) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/7yu4bzhrm2hjbvso2jnqmf94ihakk4wina.png)
These projection matrices are essential components in the spectral decomposition of the symmetric matrix A .