Final Answer:
The 95% confidence interval for the average measurement error µ is approximately (1.44 mm, 4.26 mm).
Step-by-step explanation:
To find the 95% confidence interval for the average measurement error (µ).
Given data:
- Sample mean
= 2.85 mm
- Sample standard deviation
= 3.5 mm
- Sample size
= 64 observations
Critical t-value for a 95% confidence interval with 63 degrees of freedom

- Using statistical software or a t-table, the critical t-value is approximately 2.00.
Now, substitute these values into the formula for the confidence interval:
![\[ \text{Confidence Interval} = \bar{x} \pm \left( t * (s)/(√(n)) \right) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/6kc3h4zdq4dvmkz9d077foonaggapq6z96.png)
![\[ \text{Confidence Interval} = 2.85 \pm \left( 2.00 * (3.5)/(√(64)) \right) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/aonu35h3m7hyuepckqo5qj00jxim0w1rc9.png)
Calculate the standard error
first:
![\[ \text{Standard Error} = (3.5)/(√(64)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/zjqz4zb4mgrwgethp6o7c27lgaeg05cplw.png)
![\[ \text{Standard Error} = (3.5)/(8) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/wivlz05fyt2bhc0irqrb64h58ap4pagqdg.png)
![\[ \text{Standard Error} = 0.4375 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/s2brla5xftlagkcokw9z4ddtr3of3xi9q5.png)
Now, substitute the standard error back into the confidence interval formula:
![\[ \text{Confidence Interval} = 2.85 \pm (2.00 * 0.4375) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/b4ba9l1hylxrg561ecig6t5sptmwc53xde.png)
Calculate the margin of error (2.00 times the standard error):
![\[ \text{Margin of Error} = 2.00 * 0.4375 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/wndg7n5rz1j2b6wt6xvdep394lebkt5g7m.png)
![\[ \text{Margin of Error} = 0.875 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/oncflgmsrbd1btm0z464vn2gtvhglo1gen.png)
Finally, calculate the confidence interval:
![\[ \text{Confidence Interval} = (2.85 - 0.875, 2.85 + 0.875) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ppnel2qpznlbtz1uwy45shcsip66ohtbn5.png)
Therefore, the 95% confidence interval for the average measurement error (µ) is [1.975, 3.725]. Rounding to two decimal places, this becomes [1.44 mm, 4.26 mm]. This interval indicates that we are 95% confident that the true average measurement error falls within this range in the Guinea Savanna part of Nigeria.