165k views
5 votes
if an object travels in a circle 32pi/5 radians, at what degree measure is it, relative to where it started?

User Dreyln
by
8.0k points

1 Answer

5 votes

Final answer:

To find the degree measure of an object that has traveled 32pi/5 radians, we convert the radians to degrees using the formula degrees = radians × (180/pi), resulting in 1152 degrees.

Step-by-step explanation:

If an object travels in a circle 32pi/5 radians, we can convert this radian measure to degrees to find its position relative to where it started. The conversion from radians to degrees is based on the fact that a complete revolution is 2π radians (or 360 degrees).

To convert radians to degrees, we use the formula: degrees = radians × (180/π). Therefore, to convert 32pi/5 radians to degrees:

  • 32pi/5 radians × (180/π) = 32 × 36 = 1152 degrees

So, the object would be at a degree measure of 1152 degrees relative to where it started. Since 1152 is more than 360, it indicates that the object has made more than 3 complete revolutions.

User Charles Brunet
by
7.9k points