The area of triangle ABC is
square units.
To find the area of triangle ABC, we can use the fact that the perpendicular bisectors of the sides of a triangle meet at the circumcenter. The circumcenter is equidistant from the vertices of the triangle.
Given that AH = 4, HD = 1, and BD = DC, we can infer that the circumcenter (O) is also the centroid (since the median and perpendicular bisector coincide in an equilateral triangle). Therefore, AO = BO = CO.
Since HD = 1, AH = 4, and AO = BO, we can apply the Pythagorean theorem to find OD:
![\[ OD^2 = AO^2 - HD^2 \]](https://img.qammunity.org/2024/formulas/mathematics/college/i4254y5etr8jcfw2qq9thh7jbo874kgvsx.png)
![\[ OD^2 = 4^2 - 1^2 \]](https://img.qammunity.org/2024/formulas/mathematics/college/hnvf9i6gu9e1wskwl8nc23osadg9u9gomk.png)
![\[ OD^2 = 16 - 1 \]](https://img.qammunity.org/2024/formulas/mathematics/college/ni1y8cqz6tuc97nulurb9hao7h3fkygeyx.png)
![\[ OD^2 = 15 \]](https://img.qammunity.org/2024/formulas/mathematics/college/x9i9jl82zdzb5jert2ecax7b5466usww1s.png)
Since BD = DC and OD is the perpendicular bisector of BC, BD = DC =
. Now, we can find the area of triangle ABC using the area formula:
![\[ \text{Area} = (1)/(2) \cdot BC \cdot OD \]](https://img.qammunity.org/2024/formulas/mathematics/college/7ej40kn67bf7l5slanr2dbjqvlz2htda3a.png)
![\[ \text{Area} = (1)/(2) \cdot 2 \cdot √(15) \]](https://img.qammunity.org/2024/formulas/mathematics/college/zia2w7aq0q6d6l4y02223pc1y9sjfzte4o.png)
![\[ \text{Area} = √(15) \]](https://img.qammunity.org/2024/formulas/mathematics/college/dnvsu1aoovi2iusykonv53b324xfsmgw4y.png)
Therefore, the area of triangle ABC is
square units.