Final answer:
To convert spherical coordinates to rectangular coordinates, use the formulas x = r * sin(phi) * cos(theta), y = r * sin(phi) * sin(theta), and z = r * cos(phi). Plugging in the given spherical coordinates, we get the answer as (0, sqrt(3), -sqrt(3)/2).
Step-by-step explanation:
To convert spherical coordinates to rectangular coordinates, we can use the following formulas:
x = r * sin(phi) * cos(theta)
y = r * sin(phi) * sin(theta)
z = r * cos(phi)
In this case, the spherical coordinates are (sqrt(3), -pi/2, pi/3). Let's plug them into the formulas:
x = sqrt(3) * sin(-pi/2) * cos(pi/3) = 0
y = sqrt(3) * sin(-pi/2) * sin(pi/3) = sqrt(3)
z = sqrt(3) * cos(-pi/2) = -sqrt(3)/2
Therefore, the rectangular coordinates are (0, sqrt(3), -sqrt(3)/2). Answer choice (b) matches the result.