Final answer:
The quadratic equation -0.8x² + 32x - 160 = 0 can be solved using the quadratic formula, which yields two solutions: x = 10 and x = 20.
Step-by-step explanation:
To solve the quadratic equation -0.8x²+ 32x-160 = 0, we can use the quadratic formula. The quadratic formula is ± √(b²-4ac)/2a, where a, b, and c are the coefficients of the terms in the quadratic equation ax² + bx + c = 0. Applying the quadratic formula to this equation:
We can substitute these values into the quadratic formula to find the values of x:
x = (-b ± √(b²-4ac))/(2a)
x = (-32 ± √(32²-4(-0.8)(-160)))/ (2(-0.8))
After simplifying, we find:
Therefore, the solutions to the quadratic equation -0.8x²+ 32x-160 = 0 are x = 10 and x = 20.