189k views
4 votes
Evaluate cos(−x)tan(−x)sin(−x) for positive arguments:

a) -1
b) 0
c) 1
d) Undefined

1 Answer

1 vote

Final answer:

To evaluate cos(-x)tan(-x)sin(-x) for positive arguments: a) -1 = 0.6677, b) 0 = 0, c) 1 = 0.6677, d) Undefined.

Step-by-step explanation:

To evaluate cos(-x)tan(-x)sin(-x) for positive arguments, we can use the trigonometric identities.

For a), -1:

cos(-(-1)) = cos(1) = 0.5403

tan(-(-1)) = tan(1) = 1.5574

sin(-(-1)) = sin(1) = 0.8415

So, cos(-x)tan(-x)sin(-x) = 0.5403 * 1.5574 * 0.8415 = 0.6677

b), 0:

cos(-0) = cos(0) = 1

tan(-0) = tan(0) = 0

sin(-0) = sin(0) = 0

So, cos(-x)tan(-x)sin(-x) = 1 * 0 * 0 = 0

c), 1:

cos(-1) = cos(1) = 0.5403

tan(-1) = tan(1) = 1.5574

sin(-1) = sin(1) = 0.8415

So, cos(-x)tan(-x)sin(-x) = 0.5403 * 1.5574 * 0.8415 = 0.6677

d), Undefined:

When the argument is undefined, it means that it cannot be evaluated mathematically.

User Alex Goft
by
8.6k points