Final answer:
To evaluate cos(-x)tan(-x)sin(-x) for positive arguments: a) -1 = 0.6677, b) 0 = 0, c) 1 = 0.6677, d) Undefined.
Step-by-step explanation:
To evaluate cos(-x)tan(-x)sin(-x) for positive arguments, we can use the trigonometric identities.
For a), -1:
cos(-(-1)) = cos(1) = 0.5403
tan(-(-1)) = tan(1) = 1.5574
sin(-(-1)) = sin(1) = 0.8415
So, cos(-x)tan(-x)sin(-x) = 0.5403 * 1.5574 * 0.8415 = 0.6677
b), 0:
cos(-0) = cos(0) = 1
tan(-0) = tan(0) = 0
sin(-0) = sin(0) = 0
So, cos(-x)tan(-x)sin(-x) = 1 * 0 * 0 = 0
c), 1:
cos(-1) = cos(1) = 0.5403
tan(-1) = tan(1) = 1.5574
sin(-1) = sin(1) = 0.8415
So, cos(-x)tan(-x)sin(-x) = 0.5403 * 1.5574 * 0.8415 = 0.6677
d), Undefined:
When the argument is undefined, it means that it cannot be evaluated mathematically.