Final answer:
To find the height of the school building, we can use similar triangles formed by Chase's position and the mirror. By setting up a proportion with the similar triangles, we can solve for the height of the building.
Step-by-step explanation:
To calculate the height of the school building, we can use similar triangles formed by Chase's position and the mirror. Let's call the height of the school building 'h'.
Chase is 6.75 meters away from the building and his partner measures the distance from his eyes to the ground as 1.55 meters. When Chase walks 3.45 meters past the mirror, he can see the top of the school building in the mirror. This means that the height of the mirror from the ground is 1.55 + h. By setting up a proportion with the similar triangles, we can solve for h.
Using the proportion (h / (1.55 + h)) = (6.75 / 3.45), we can cross multiply and solve for h.
Simplifying the equation, h = (1.55 * 6.75) / (3.45 - 1.55).
Plugging in the values, we get h = 3.01 meters. Therefore, the height of the school building is approximately 3.01 meters.