Final answer:
To convert the polar coordinates (7, 11\(\pi\)/6) to Cartesian coordinates, one calculates the x and y components using trigonometric functions to get the Cartesian coordinates (7\(\sqrt{3}\)/2, -7/2), which matches option A.
Step-by-step explanation:
The conversion of polar coordinates (7, 11\(\pi\)/6) to Cartesian coordinates involves the use of the formulas x = r\(\cos\)(\(\theta\)) and y = r\(\sin\)(\(\theta\)), where r is the radius and \(\theta\) is the angle in radians.
- First, calculate the x-coordinate:
- x = 7\(\cos\)(11\(\pi\)/6) = 7\(\cos\)(330\(^\circ\)) = 7\(\sqrt{3}\)/2
- Next, calculate the y-coordinate:
- y = 7\(\sin\)(11\(\pi\)/6) = 7\(\sin\)(330\(^\circ\)) = -7/2
The Cartesian coordinates are (7\(\sqrt{3}\)/2, -7/2), which corresponds to option A.