The area of the right-angled triangle is
.
The length of the hypotenuse is given as 10 cm. The perimeter of the triangle is the sum of the three sides:
![\[ \text{Perimeter} = \text{Width} + \text{Height} + \text{Hypotenuse} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/w2z9sy1mo4lvlvh1t67zgoeud8pvplya6j.png)
Given that the perimeter is 24 cm, we can set up the equation:
![\[ x + \text{Height} + 10 = 24 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/s15m1xg6y7ihdvybr2v5pi23mhrrjpaold.png)
Now, solve for the height
:
![\[ \text{Height} = 24 - x - 10 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/vr4fwdqj88x8hmqlzvwcnkxdtoandzc0pr.png)
![\[ \text{Height} = 14 - x \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/yd35x06csjn3fmp7r2zqccvia6hiquyuws.png)
Now, we can use the Pythagorean theorem to relate the width, height, and hypotenuse:
![\[ x^2 + (\text{Height})^2 = \text{Hypotenuse}^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/96qiss15coum91f2fi62edmms788xtx3gv.png)
Substitute the expression for height:
![\[ x^2 + (14 - x)^2 = 10^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/yuope417b0qsqyboe6oql9rwzv078mr3fk.png)
Now, solve for x:
![\[ x^2 + (196 - 28x + x^2) = 100 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/9fe2q4hgrjrkzg53q9alhfrov27xcwtroe.png)
![\[ 2x^2 - 28x + 96 = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/553wkf7yqixi01hmfumdpp25ghexu029hz.png)
Divide the entire equation by 2 to simplify:
![\[ x^2 - 14x + 48 = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/8x6m6c7klsqykuiofbcaduvr056m7nzv1g.png)
Now, factor the quadratic equation:
![\[ (x - 6)(x - 8) = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/bs9oqgorfmlyoaopt3s8g0ctc0tjxeqkkw.png)
So,
or
. Since the width cannot be negative, we take
cm.
Now that we have the width
and the height
, we can find the area
of the right-angled triangle using the formula:
![\[ A = (1)/(2) * \text{Width} * \text{Height} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/wv2bk8uj6rvbn2ixk7hmbjko1vws4zqdg7.png)
Substitute the values:
![\[ A = (1)/(2) * 8 * 6 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ucos1tfr21s5ttyot1l74aj61b4u2erw0z.png)
![\[ A = 24 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/z5pkzxcqzxkuh1c07ln4skhzwwpegeuirn.png)
Therefore, the area of the right-angled triangle is
.