The length of the rectangle is 10 inches.
Let's denote the length of the rectangle as
and the width as
. The perimeter of a rectangle is given by the formula
, and the area is given by the formula
.
Given that the perimeter is 44 inches, we have:
![\[ P = 2L + 2x = 44 \]](https://img.qammunity.org/2024/formulas/mathematics/college/vjn5kkkh59um9399ebo35k0cbrzvd8gwra.png)
And given that the area is 120 square inches, we have:
![\[ A = LW = 120 \]](https://img.qammunity.org/2024/formulas/mathematics/college/zmhuldjvc4xgrigfd0vfcuan521se8vfrt.png)
Now, let's use these equations to solve for
.
1. Express
in terms of
from the perimeter equation:
![\[ 2L + 2x = 44 \]](https://img.qammunity.org/2024/formulas/mathematics/college/1prttcku3dnt5gh279cbavidf3iftupww4.png)
![\[ 2L = 44 - 2x \]](https://img.qammunity.org/2024/formulas/mathematics/college/2gs0tn993i3fr2yzrqzto06iourejasxtp.png)
![\[ L = (44 - 2x)/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/65gzp3so8s8jyg8sr7sftmwigl2chtftll.png)
![\[ L = 22 - x \]](https://img.qammunity.org/2024/formulas/mathematics/college/bt4qhku5cpg5fykutkcwwof1hockg4ycz2.png)
2. Substitute the expression for
into the area equation:
![\[ LW = 120 \]](https://img.qammunity.org/2024/formulas/mathematics/college/22mipiiu76cmbrfbedv639byquazzbnyty.png)
![\[ (22 - x)x = 120 \]](https://img.qammunity.org/2024/formulas/mathematics/college/v486ww0n0bkdivt9wb9afa1b6yc0end4ym.png)
3. Solve the quadratic equation:
![\[ 22x - x^2 = 120 \]](https://img.qammunity.org/2024/formulas/mathematics/college/uii3778k94igucamdbosszoald62ylo3hf.png)
![\[ x^2 - 22x + 120 = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/college/tsqm416r42qs2x9jocnlsf4oa6c3qp423t.png)
4. Factor the quadratic equation:
![\[ (x - 10)(x - 12) = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/college/szabv21b8a3jqkly6xrp5zhtstoc2uzz7d.png)
This equation has two solutions:
and
. However, since the width cannot be negative, we discard the
solution.
5. Substitute the remaining value of
back into the expression for
:
![\[ L = 22 - x \]](https://img.qammunity.org/2024/formulas/mathematics/college/bt4qhku5cpg5fykutkcwwof1hockg4ycz2.png)
![\[ L = 22 - 12 \]](https://img.qammunity.org/2024/formulas/mathematics/college/9cw8hqxfckrgshqiulio7g6due17r0wq7d.png)
![\[ L = 10 \]](https://img.qammunity.org/2024/formulas/mathematics/college/et5polexe8vysp5nj5hdld6ch5yf8nz1ho.png)
So, the length of the rectangle is 10 inches.