101,055 views
39 votes
39 votes
Audio Button

Question
Write a linear function f with f(5)=7 and f(2)=0

User Hasan Veli Soyalan
by
2.9k points

1 Answer

17 votes
17 votes

f(5) = 7 is another to say a point at (5 , 7)

f(2) = 0 is another to say a point of (2 , 0)

to get the equation of any straight line, we simply need two points off of it, let's use those two above


(\stackrel{x_1}{5}~,~\stackrel{y_1}{7})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{0}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{0}-\stackrel{y1}{7}}}{\underset{run} {\underset{x_2}{2}-\underset{x_1}{5}}} \implies \cfrac{ -7 }{ -3 } \implies \cfrac{ 7 }{ 3 }


\begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{7}=\stackrel{m}{ \cfrac{ 7 }{ 3 }}(x-\stackrel{x_1}{5}) \\\\\\ y-7=\cfrac{ 7 }{ 3 }x-\cfrac{ 35 }{ 3 }\implies y=\cfrac{ 7 }{ 3 }x-\cfrac{ 35 }{ 3 }+7\implies {\Large \begin{array}{llll} y=\cfrac{ 7 }{ 3 }x-\cfrac{14}{3} \end{array}}

User Don Zacharias
by
3.2k points