Final answer:
To heat 55.0g of H₂O(s) from -22.0 °C to H₂O(g) at 123.0 °C, you need to consider the phase changes and temperature changes. The total heat required is the sum of the heat for phase change and temperature change.
Step-by-step explanation:
To calculate the amount of energy required to heat H₂O from -22.0 °C to 123.0 °C, we need to consider the phase changes and temperature changes.
Phase Change:
First, we need to calculate the heat required to convert the ice at -22.0 °C to water at 0 °C. This can be done using the formula:
Heat = mass × heat of fusion
Heat = 55.0 g × 79.9 cal/g = 4394.5 cal
Temperature Change:
Next, we need to calculate the heat required to raise the temperature of the water from 0 °C to 123.0 °C. This can be done using the formula:
Heat = mass × specific heat × temperature change
Heat = 55.0 g × 4.184 J/g °C × (123.0 °C - 0 °C)
Heat = 28897.32 J
Total Heat Required:
The total heat required is the sum of the heat for phase change and temperature change:
Total Heat Required = 4394.5 cal + 28897.32 J