104k views
0 votes
If r(t) = 4e^(3t) i+2e^(−3t) j + 4te^(3t) k, Find t(0), r′′(0), and r′(t) ⋅ r′′(t).

A) t(0)=0, r′′(0)=24, r′(t) ⋅ r′′(t)=0
B) t(0)=0, r′′(0)=4, r′(t) ⋅ r′′(t)=0
C) t(0)=1, r′′(0)=16, r′(t) ⋅ r′′(t)=0
D) t(0)=1, r′′(0)=24, r′(t) ⋅ r′′(t)=0

1 Answer

1 vote

Final answer:

t(0)=0, r''(0)=24, and r'(t) ⋅ r''(t) = 432e^(3t) - 36e^(-3t) + (12te^(3t) + 4e^(3t))(12e^(3t) + 36te^(3t) + 4e^(3t))

Step-by-step explanation:

To find t(0), we need to substitute t = 0 in the given function r(t). So, substituting t = 0 in r(t), we get:

r(0) = 4e^(3(0))i + 2e^(-3(0))j + 4(0)e^(3(0))k

r(0) = 4i + 2j + 0k

Therefore, t(0) = 0.

To find r''(0), we need to differentiate the given function r(t) twice with respect to t. Differentiating r(t) once, we get:

r'(t) = 12e^(3t)i - 6e^(-3t)j + (12te^(3t) + 4e^(3t))k

Now, differentiating r'(t) with respect to t, we get:

r''(t) = 36e^(3t)i + 6e^(-3t)j + (12e^(3t) + 36te^(3t) + 4e^(3t))k

Substituting t = 0 in r''(t), we get:

r''(0) = 36i + 6j + 16k

Therefore, r''(0) = 36i + 6j + 16k = 24.

To find r'(t) · r''(t), we need to take the dot product of r'(t) and r''(t). So, calculating the dot product, we get:

r'(t) · r''(t) = (12e^(3t)i - 6e^(-3t)j + (12te^(3t) + 4e^(3t))k) · (36e^(3t)i + 6e^(-3t)j + (12e^(3t) + 36te^(3t) + 4e^(3t))k)

r'(t) · r''(t) = 12(36e^(3t)) + 6(-6e^(-3t)) + (12te^(3t) + 4e^(3t))(12e^(3t) + 36te^(3t) + 4e^(3t))

Therefore, r'(t) · r''(t) = 432e^(3t) - 36e^(-3t) + (12te^(3t) + 4e^(3t))(12e^(3t) + 36te^(3t) + 4e^(3t)).

User Nuss
by
8.0k points