190k views
0 votes
Find the sum of the first 90 terms of the sequence: 13, 15, 17, 19, ...

a) 73800
b) 73890
c) 73980
d) 74070

User Omegaman
by
7.6k points

1 Answer

6 votes

Final answer:

The sum of the first 90 terms of the sequence is 9180.

Step-by-step explanation:

To find the sum of the first 90 terms of a sequence, we can use the formula:
Sum = (n/2)(2a + (n-1)d), where n is the number of terms, a is the first term, and d is the common difference.

In this sequence, the first term (a) is 13 and the common difference (d) is 2, since each term increases by 2. So, plugging in the values into the formula, we get:
Sum = (90/2)(2(13) + (90-1)(2)) = 45(26 + 178) = 45(204) = 9180.

Therefore, the sum of the first 90 terms of the sequence is 9180.

User Kevin Van Ryckegem
by
8.6k points