Final answer:
The given expression cos(2arccos(2u)) can be rewritten as 2u² - 1.
Step-by-step explanation:
This expression can be simplified as follows:
Using the identity: cos(2θ) = 2cos²(θ) - 1
We can rewrite the expression as:
cos(2arccos(2u)) = 2cos²(arccos(2u)) - 1
We know that cos(arccos(x)) = x, so we can substitute arccos(2u) with x:
cos(2arccos(2u)) = 2cos²(x) - 1
Now, we substitute cos²(x) with u:
cos(2arccos(2u)) = 2u² - 1
So, the correct answer is A. 4u²−1.