143k views
1 vote
Expand the following expression using the binomial theorem (1 - 3x)⁴.

User Edit
by
8.1k points

1 Answer

4 votes

Final answer:

To expand the expression (1 - 3x)⁴ using the binomial theorem, we can use the formula (a + b)ⁿ = C(n,0)aⁿb⁰ + C(n,1)aⁿ⁻¹b¹ + C(n,2)aⁿ⁻²b² + ... + C(n,n-1)abⁿ⁻¹ + C(n,n)a⁰bⁿ. In this case, a = 1, b = -3x, and n = 4. Plugging these values into the formula, we get (1 - 3x)⁴ = 1 - 12x + 54x² - 108x³ + 81x⁴.

Step-by-step explanation:

To expand the expression (1 - 3x)⁴ using the binomial theorem, we can use the formula:

(a + b)ⁿ = C(n,0)aⁿb⁰ + C(n,1)aⁿ⁻¹b¹ + C(n,2)aⁿ⁻²b² + ... + C(n,n-1)abⁿ⁻¹ + C(n,n)a⁰bⁿ

In this case, a = 1, b = -3x, and n = 4. Plugging these values into the formula, we get:

(1 - 3x)⁴ = C(4,0)1⁴(-3x)⁰ + C(4,1)1³(-3x)¹ + C(4,2)1²(-3x)² + C(4,3)1¹(-3x)³ + C(4,4)1⁰(-3x)⁴

Simplifying this expression gives:

(1 - 3x)⁴ = 1 - 12x + 54x² - 108x³ + 81x⁴

Combining these, we have the expanded form: 1 - 12x + 54x² - 108x³ + 81x⁴.

User NanoWizard
by
8.4k points