82.9k views
5 votes
Calculate the frequency of each of the following wavelengths of electromagnetic radiation.

a) λ = 500 nm
b) λ = 1.5 μm
c) λ = 10 cm
d) λ = 0.01 Å

1 Answer

2 votes

Final Answer:

a) \(5.99 \times 10^{14}\) Hz

b) \(1.99 \times 10^{14}\) Hz

c) \(3.00 \times 10^{9}\) Hz

d) \(3.00 \times 10^{16}\) Hz

Step-by-step explanation:

The frequency (\(v\)) of electromagnetic radiation can be calculated using the speed of light (\(c\)) formula: \(v = \frac{c}{\lambda}\), where \(\lambda\) is the wavelength.

a) For \(λ = 500 \, \text{nm}\):

\[ v = \frac{3.00 \times 10^8 \, \text{m/s}}{500 \times 10^{-9} \, \text{m}} \approx 5.99 \times 10^{14} \, \text{Hz} \]

b) For \(λ = 1.5 \, \mu\text{m}\):

\[ v = \frac{3.00 \times 10^8 \, \text{m/s}}{1.5 \times 10^{-6} \, \text{m}} \approx 1.99 \times 10^{14} \, \text{Hz} \]

c) For \(λ = 10 \, \text{cm}\):

\[ v = \frac{3.00 \times 10^8 \, \text{m/s}}{10 \, \text{cm}} = 3.00 \times 10^9 \, \text{Hz} \]

d) For \(λ = 0.01 \, \text{Å}\) (Note: 1 Å = \(1 \times 10^{-10}\) m):

\[ v = \frac{3.00 \times 10^8 \, \text{m/s}}{0.01 \times 10^{-10} \, \text{m}} = 3.00 \times 10^{16} \, \text{Hz} \]

These frequencies represent the number of cycles per second for each corresponding wavelength of electromagnetic radiation.

User Justin Morris
by
7.9k points