Answer:

General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
Algebra II
- Distance Formula:

Explanation:
Step 1: Define
Point (-5, -2) → x₁ = -5, y₁ = -2
Point (-3, 4) → x₂ = -3, y₂ = 4
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]:

- [√Radical] (Parenthesis) Add:

- [√Radical] Evaluate exponents:

- [√Radical] Add:

- [√Radical] Simplify:
