52.3k views
2 votes
If sin θ = cot θ, then, what is the value of cos θ + 2 cos^2 θ + 2 cos^3 θ + cos^ 4 θ ?

1 Answer

13 votes

Notice that

cos(θ) + 2 cos²(θ) + 2 cos³(θ) + cos⁴(θ)

= cos(θ) (1 + 2 cos(θ) + 2 cos²(θ) + cos³(θ))

= cos(θ) ([1 + cos(θ)] + [cos(θ) + cos²(θ)] + [cos²(θ) + cos³(θ)])

= cos(θ) ([1 + cos(θ)] + [cos(θ) (1 + cos(θ))] + [cos²(θ) (1 + cos(θ))])

= cos(θ) (1 + cos(θ)) (1 + cos(θ) + cos²(θ))

Given that sin(θ) = cot(θ), by definition of cotangent this tells us that

sin(θ) = cos(θ)/sin(θ) ⇒ cos(θ) = sin²(θ)

and by the Pythagorean identity

cos²(θ) + sin²(θ) = 1

it follows that

cos(θ) = sin²(θ) = 1 - cos²(θ)

Substituting these results into the factorization above gives

cos(θ) (1 + cos(θ)) (1 + cos(θ) + cos²(θ))

= cos(θ) (1 + cos(θ)) (1 + [1 - cos²(θ)] + cos²(θ))

= 2 cos(θ) (1 + cos(θ))

= 2 sin²(θ) (1 + cos(θ))

= 2 (1 - cos²(θ)) (1 + cos(θ))

= 2 (1 + cos(θ) - cos²(θ) - cos³(θ))

= 2 (cos(θ) + cos(θ) - cos³(θ))

= 2 (2 cos(θ) - cos³(θ))

= 2 cos(θ) (2 - cos²(θ))

= 2 cos(θ) (1 + cos(θ))

= 2 (cos(θ) + cos²(θ))

= 2 (1 - cos²(θ) + cos²(θ))

= 2

User Dog
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories